
Learning to use a digital workbench to develop competence-based tests in vocational education: guided or explorative?

UNIVERSITÄT
DUISBURG
ESSEN

Open-Minded

Josef Buchner, Anne-Cathrin Vonarx, Peter Pfänder, & Michael Kerres

CELDA 2020 19.11.2020, Internet

ASPE project¹

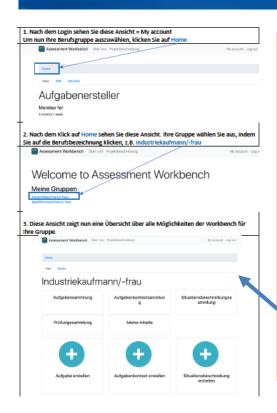
ASPE = Assessment for Professional Exams

Goals:

- Competence-based exams → professionalization
- Exam administration → digital workbench

 $^{1\ \}underline{https://learninglab.uni\text{-}due.de/forschung/projekte/aspe-kompetenzorientierte-pr-fungen}$

Theoretical Background



Guided vs. Unguided

- Minimal guidance does not work! (Kirschner et al., 2006; Sweller et al., 2007)
- Works, with scaffolding! (Hmelo-Silver et al., 2007)
- Depends on learning goals? (e.g. Renkl, 2015)
 - Productive failure (Kapur, 2008)
 - Challenge may overcome overload (Likourezos & Kalyuga, 2017)
 - Exploration promotes motivation, interest, attitudes, ... (e.g. Newman & DeCaro, 2019)
 - Basic knowledge or near transfer? (Halmo et al., 2020)

Aim of the study

Contribution to empirical evidence base Comparison of:

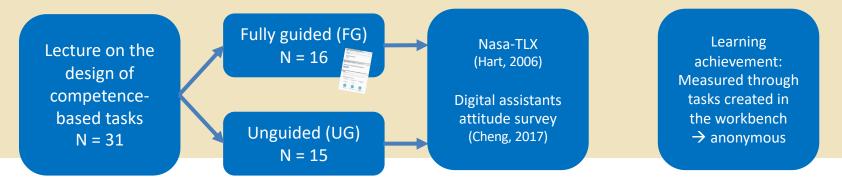
- Fully guided approach with worked examples*
- Explorative approach without further guidance

*Worked examples are elaborated samples of problems that lead step by step to the solution to the problem (e.g. Atkinson & Renkl, 2007).

RQ and predictions

How do a fully guided approach affects different learning goals compared to an explorative approach?

- H1: Worked examples group scores better on tasks related to the quantity and quality of the prepared exams.
- **H2:** The explorative group scores better on tasks related to the testing of the functionalities of the digital workbench.
- H3: Worked examples group reports lower cognitive load.
- **H4:** Worked examples group shows more positive attitudes toward the workbench.


• **H5:** Attitude toward the workbench positively influences cognitive load.

Method

Randomized field experiment

- 31 Participants, four women, MD_{age} = 50.6 (SD = 8.9)
- Teachers and research assistants who will use the digital workbench for preparation of exams
- Small group work on the instructions → preparing tasks in the digital workbench

H1: Does the FG group score better?

Variable	FG		UG		t(11)	р
	М	SD	M	SD		
Learning Obj. 1 – quantitative	3.50	1.38	1.71	0.95	-2.75	0.019
Learning Obj. 1 – qualitative	6.50	5.68	4.00	3.00	-1.02	0.33

H1: Does the FG group score better?

Variable	FG		UG		t(11)	р
	M	SD	M	SD		
Learning Obj. 1 – quantitative	3.50	1.38	1.71	0.95	-2.75	0.019
Learning Obj. 1 – qualitative	6.50	5.68	4.00	3.00	-1.02	0.33

H2: Does the UG group tested more functionalities?

Variable	FG		UG		t(11)	р
	M	SD	M	SD		
Learning Obj. 2 – functions	8.00	5.40	10.00	6.90	0.57	0.58

H3: Does the FG group reported lower cognitive load?

- No main effect for overall cognitive load: t(29) = 1.63, p = 0.12
- No effect for the scales: mental demand, physical demand, effort and frustration

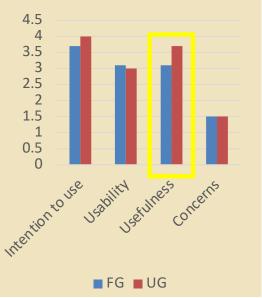
Variable	FG		UG		t(29)	р	Cohen's d
	М	SD	М	SD			
Temporal Demand	4.00	3.76	8.92	4.73	3.12	0.004	1.21
Performance*	8.50	4.65	12.20	4.78	2.18	0.037	0.78

^{*}Scale performance is reverse coded

H3: Does the FG group reported lower cognitive load?

- No main effect for overall cognitive load: t(29) = 1.63, p = 0.12
- No effect for the scales: mental demand, physical demand, effort and frustration

Variable	FG		UG		t(29)	р	Cohen's d
	М	SD	М	SD			
Temporal Demand	4.00	3.76	8.92	4.73	3.12	0.004	1.21
Performance*	8.50	4.65	12.20	4.78	2.18	0.037	0.78


^{*}Scale performance is reverse coded

H4: Does the FG group show more positive attitudes toward the workbench?

No sig. differences between the groups

Both groups report positive attitudes towards the workbench (max. = 5)

H5: Does the attitude influence cognitive load?

	Unstandardized		Standardized		Coefficients Std. Error	
Variable	FG	UG	FG	UG	FG	UG
(Constant)	19.19***	6.45				
Usability	-3.92**	-1.23	-0.54**	-0.20	1.32	1.78
Usefulness	-1.43*	1.50	-0.48*	0.57	0.66	1.07
Concerns	0.52	3.00	0.07	0.54	1.38	1.89
Intention to Use	1.03	-1.02	0.29	-0.31	0.72	1.28
R ²	0.67	0.36				
corr. R ²	0.55	0.11				
F-FG(4,11), F-UG(4,10)	5.63**	1.41				
f ²	1.11	-				

*p=0.05, **p<0.05, ***p<0.01

Coefficients Std. Error

H5: Does the attitude influence cognitive load?

	Unstandar	dized
Variable	FG	
(Constant)	19.19***	
Usability	-3.92**	^
Usefulness	-1.43*	P
Concerns	0.52	L
Intention to Use	1.03	,
		(
R ²	0.67	p
corr. R ²	0.55	P
F-FG(4,11), F-UG(4,10)	5.63**	
f ²	1.11	

Additionally: usability (p = 0.02) and usefulness (p = 0.01) sig. predictors of performance in FG group

Standardized

*p=0.05, **p<0.05, ***p<0.01

Discussion

- Clear learning goals create N exams: FG > UG (e.g. van Gog & Rummel, 2010; Kapur, 2008)
- Quality of exams: FG = UG, explainable via prior knowledge (e.g. Sweller et al., 2019)
- Exploration of functionalities: FG = UG (with slight advantages)
- No main effect for cognitive load → Limitation: task to simple? (e.g. Ashman et al., 2020)
- Temporal demand and performance: FG > UG
 - Explorative approaches need more time (Kirschner et al., 2006)
 - Perception of performance can influence learning (Bandura, 1977)
- No influence on attitudes → future research with focus on usefulness?
- Usability and usefulness as predictors in FG group

Limitations

- Small sample → more are not doing this job ©
- Too easy task
- Knowledge gained from the lecture not controlled
- Complex design and data analysis → addressing different learning goals

Conclusion

"take home message"

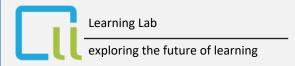
Consider the learning goals in instructional design and the consequences that a learning approach may have.*

References

- Ashman, G., Kalyuga, S., & Sweller, J. (2020). Problem-solving or Explicit Instruction: Which Should Go First When Element Interactivity Is High? *Educational Psychology Review*, 32(1), 229–247. https://doi.org/10.1007/s10648-019-09500-5
- Bandura, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavioral Change. Psychological Review, 84(2), 191–215.
- Halmo, S. M., Sensibaugh, C. A., Reinhart, P., Stogniy, O., Fiorella, L., & Lemons, P. P. (2020). Advancing the Guidance Debate: Lessons from Educational Psychology and Implications for Biochemistry Learning. CBE—Life Sciences Education, 19(3), ar41. https://doi.org/10.1187/cbe.19-11-0260
- Hattie, J. A. C., & Donoghue, G. M. (2016). Learning strategies: A synthesis and conceptual model. Npj Science of Learning, 1(1). https://doi.org/10.1038/npjscilearn.2016.13
- Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? *Educational Psychology Review*, 16(3), 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
- Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006). Educational Psychologist. 42(2), 99–107. https://doi.org/10.1080/00461520701263368
- Kapur, M. (2008). Productive Failure. Cognition and Instruction, 26(3), 307-313. https://doi.org/10.1080/07370000802212669
- Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. *Educational Psychologist*, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
- Likourezos, V., & Kalyuga, S. (2017). Instruction-first and problem-solving-first approaches: Alternative pathways to learning complex tasks. *Instructional Science*, 45(2), 195–219. https://doi.org/10.1007/s11251-016-9399-4
- Newman, P. M., & DeCaro, M. S. (2019). Learning by exploring: How much guidance is optimal? Learning and Instruction, 62, 49–63. https://doi.org/10.1016/j.learninstruc.2019.05.005
- Renkl, A. (2015). Different roads lead to Rome: The case of principle-based cognitive skills. Learning: Research and Practice, 1(1), 79–90. https://doi.org/10.1080/23735082.2015.994255
- Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. *Educational Psychologist*, 42(2), 115–121. https://doi.org/10.1080/00461520701263426
- Sweller, J., van Merriënboer, J., & Paas, F. G. W. C. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. *Educational Psychology Review*, *31*(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5
- van Gog, T., & Rummel, N. (2010). Example-Based Learning: Integrating Cognitive and Social-Cognitive Research Perspectives. *Educational Psychology Review*, 22(2), 155–174. https://doi.org/10.1007/s10648-010-9134-7
- Yeo, D. J., & Fazio, L. K. (2019). The optimal learning strategy depends on learning goals and processes: Retrieval practice versus worked examples. *Journal of Educational Psychology*, 111(1), 73–90. https://doi.org/10.1037/edu0000268

Thank you!

Josef Buchner, Anne-Cathrin Vonarx, Peter Pfänder, & Michael Kerres


josef.buchner@uni-due.de

<u>learninglab.uni-due.de</u>

<u>ASPE project</u>

UNIVERSITÄT
DUISBURG
ESSEN

Offen im Denken

